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Abstract 
The inherent variability of pasturelands makes it difficult to sample soils and 
accurately characterize a pasture. Indirect methods such as soil 
electroconductivity (EC) can be used to rapidly, noninvasively, and inexpensively 
quantify soil variability. The objective of this study was to determine if rapidly 
collected, georeferenced soil information could be used to propose an accurate, 
multistage sampling scheme for five soil variables in a central Iowa pasture. 
Results from this study suggest that the use of noninvasively collected soil EC and 
topographic data along with fuzzy k-means clustering can be used to delineate 
relatively homogeneous sampling zones. Consequently, these easily defined 
sampling zones can beneficially serve as a more directed approach to soil 
sampling. 
 
Introduction 

Devising a soil-sampling scheme in 
a pasture situation is difficult due to the 
inherent variability in pasture 
landscapes (Fig. 1). The design of 
traditional sampling schemes, such as 
grid and triangular, overlook a very 
important truth in field studies: certain 
areas of a field are more similar than 
other areas of the field. This fact is also 
the fundamental principle of 
geostatistics: points that are located 
close together are often more similar 
than points located far apart. This 

principle can be applied to generating a sampling scheme for a field situation 
that is more efficient. 

A “good” sampling scheme should be able to quantify field variability as 
accurately as possible and with as few sampling points as possible. An initial 
step in sampling a field may be to divide the field into a number of homogeneous 
strata (5). Stratified sampling requires taking one or multiple samples within 
each stratum (15). If the areas within the strata were homogeneous, this would 
support the principle of geostatistics by grouping together points within a field 
that are similar. Two-stage sampling designs begin with an initial sampling of 
primary units and then secondary units are selected from each of the selected 
primary units (15). Further stages of sampling from the secondary or higher-
order units may follow and are termed multistage sampling. However, how does 
one know if areas of a field are similar if samples have not yet been taken?  

One way to quickly measure field variability is by use of electromagnetic 
induction (EMI). Soil electrical conductivity (EC) can be measured on an 

Fig. 1. Rolling topography of pastures. 
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extremely small grid in a rapid, easy and nondestructive manner by the use of 
EMI. Soil EC is affected by a number of soil characteristics including soil water 
content, dissolved salt content, clay content and mineralogy, and soil 
temperature (11). Soil EC, as measured by EMI, has been correlated with clay 
content (20), soil water content (8), sand deposition (9), total soluble salts (20), 
yield (7), and soil available N (6). Benefits from the relationship between soil EC 
and various soil properties include improved soil mapping, prediction, and 
management. 

In this study, the coupling of soil EC measurements with global positioning 
systems (GPS) was used to rapidly, easily, and nondestructively collect 
georeferenced data. By using this information to measure field variability within 
the pasture, a sampling scheme was devised. Sampling efficiency could be 
improved by sampling a field more densely in areas that are heterogeneous and 
less densely in areas that are homogeneous; thus, a stratified sampling scheme 
was used. The objective of this study was to determine if rapidly collected, 
georeferenced soil information could be used to propose an accurate, multistage 
soil-sampling scheme. 
 
Pasture Site Description 

Research was conducted at the Iowa State University Rhodes Research Farm 
(41°52'N, 93°10'W) in central Iowa. The Wisconsin loess-covered landscape has 
an underlying Yarmouth-Sangamon paleosol. The soils are primarily slope and 
erosion phases of the Fayette (Fine-silty, mixed, superactive, mesic Typic 
Hapludalfs) and Clarinda (Fine, smectitic, mesic Vertic Argiaquolls) series (T. E. 
Fenton, personal communication, 2001). The pasture site of the study included 
topographically distinct summit, sideslope, toeslope, backslope, and opposite 
summit landscape positions (Fig. 2).  
 

 
Sampling Methods 

A dense soil-sampling grid consisting of 116 points was devised for a 1-acre, 
nongrazed grass-legume pasture (Fig. 3). Sampling points were arranged in a 
triangular grid with inter- and intra-row separation distances of 19.7 ft. In order 
to obtain data from samples located closer than 19.7 ft, an additional point was 
sampled within each row at randomly chosen 3.3 or 6.6 ft separation distances. 
This short range variation in soil samples was investigated in order to obtain a 
more reliable experimental semivariogram model (3). 
 

 
Soil EC estimates were obtained with a Geonics EM-38 (Geonics, Ontario, 

Canada) as it was pulled behind a four-wheel drive vehicle in a nonconductive 
cart. The EM-38 was operated in the vertical dipole orientation at 0.65 ft above 
the soil surface. The EM-38 integrates over an area approximately equal to its 

 

Fig. 2. Wireframe map illustrating 
topographic variation of pasture site 
(Golden Software, Inc., Golden, 
Colorado). Units of feet shown above 
mean sea level. 

 

 

Fig. 3. Initial dense sampling scheme 
(n = 116). 
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length of 3.3 ft and over a depth of approximately 9.8 ft (12). However, the 
measurement is primarily influenced by the 0-to-4.9-ft depth increment (12). 
Given the speed of travel and rate of EC data collection, an EC reading was 
logged approximately every 13 ft along transects spaced 6 ft apart throughout 
the pasture. Each soil EC measurement was georeferenced using a Trimble GPS 
Pathfinder Pro XR receiver (Trimble, Sunnyvale, CA), and all GPS locations were 
differentially corrected (DGPS) to obtain 3-to-6-ft accuracy. EM-38 
measurements were recorded via a direct connection to Trimble System 
Controller 1 Asset Surveyor software (Trimble, Sunnyvale, CA) in the GPS 
datalogger. Positional data for the soil EC values were corrected for the lag 
distance between GPS receiver and the EM-38 instrument. Soil EC values at 
each of the 116 grid points were interpolated from the dense data set of the 834 
georeferenced EC points. 

Soil samples were collected via coring following the EM-38 measurements. 
At each of the 116 sampling sites, five 6-inch soil cores were collected and 
combined for soil pH and available P and K analysis in the Iowa State University 
Soils Testing Laboratory (Ames, IA). Organic matter was analyzed from a single 
core composed of three depth increments to 18 inches, using a dry combustion 
method. Organic matter percentage averaged across all three depth increments 
was reported. To quantify soil moisture, a single core composed of seven 6-inch 
samples was taken. Each 6-inch sample was analyzed using the gravimetric 
moisture method (2), and average percent soil moisture was reported.  

Elevation data were recorded using a Leica System 500 real time kinematic 
(RTK) system (Leica, Switzerland), and slope data were calculated from this 
using ArcView 3.2 Spatial Analyst (ESRI, Redlands, CA). Geostatistical analyses 
were performed using ArcView 8.1 ArcGIS Geostatistical Analyst (ESRI, 
Redlands, CA). 
 
Multistage Sampling Scheme 

Multistage sampling was examined as a stepwise method to create relatively 
homogeneous sampling zones. Using recorded soil EC and topographic data, a 
fuzzy k-means algorithm was implemented as the next step in the multistage 
sampling scheme. The algorithm was used to stratify the field into relatively 
homogeneous zones based on the densely collected soil EC and topographic 
data. The fuzzy k-means method has been utilized for classifying soil and 
landscape data when binary or strictly discrete groupings are not adequate to 
describe natural systems (4). Given the continuous nature of soils, fuzzy set 
classification provides a suitable means of classifying areas of a field.  

Elevation, slope, and apparent soil EC were used to delineate zones using the 
software program Management Zone Analyst (18). Based on the software 
output, five zones appeared optimal for establishing strata of homogeneity in the 
pasture (Fig. 4). Within these five strata, two intensities of a ranked set sampling 
scheme (10) were analyzed: n = 30 and n = 15 (Figs. 5 and 6). Ranked set 
sampling was first described by McIntyre (10) as a method for obtaining more 
precise and unbiased measurements of forage yield. The five strata delineated by 
clustering corresponded to the sets in ranked set sampling. The points within 
each of the five strata were ranked in order of EC value magnitude. Soil EC was 
chosen as a concomitant variable because it was the variable most easily and 
accurately collected (14), and it was correlated with the soil variables of interest. 
When constructing the n = 30 scheme, six points were selected in each of the 
five strata. With this scheme, the six points were chosen based on maximizing 
the within-zone variation of soil EC. The six points were selected based on 
choosing the minimum, maximum, and four in-between quantile values of soil 
EC within each zone. Maximum within-zone variation was sought in order to 
maintain the variability identified throughout the field. Similarly, when devising 
the n = 15 scheme, three points were selected in each of the five strata with the 
goal of maximizing the within-zone variation of the concomitant variable, soil 
EC. The three points were selected based on choosing the minimum, maximum, 
and median values of soil EC within each zone. 
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Field Characterization  

The statistical summaries of topographic and soil attributes for the initial, 
dense grid (n = 116) sampling scheme indicated a range in elevation of 21 ft (16). 
Large CVs and ranges for soil P, K, pH, OM, and moisture illustrated the 
magnitude of soil variability within the pasture (16). The degree to which soil EC 
can detect this soil variability improves our ability to delineate homogeneous 
sampling strata. 

How well soil EC identifies soil variability depends upon soil EC’s 
relationship with the soil parameters of interest. The results of the large 
database indicated a strong correlation between soil EC and soil pH, elevation 
and soil K (r values greater than 0.5). Soil EC was moderately correlated with 
soil moisture and OM values (0.10 < r < 0.50) and weakly correlated with soil P 
and slope (r < |0.10|) (16). 

These correlations were not of primary interest in our objectives, however. 
Of interest was determining whether soil EC could be used effectively to identify 
soil spatial variation and zones of homogeneity from which to sample. In the 
pasture of study, variability in soil EC appeared closely related to the variation in 
landscape position and depth to paleosol (T. E. Fenton, personal 
communication, 2002). Higher values of soil EC were measured in the toeslope 
positions. These positions have a higher moisture content and are underlain by a 
clay-textured paleosol (Clarinda series). Lower values of soil EC were measured 
upslope on the summit positions where the soils were developed entirely in 
loess. Middle values were measured on the backslope where the soils are formed 
in loess and the underlying paleosol. Because the soil was not dominated by 
carbonates, the variation in soil EC values was likely related to soil moisture 
content and textural properties (1). Textural properties influence soil parameters 
such as organic matter and ionic properties; thus, it was concluded that soil EC 
is measuring variation in soil properties related to moisture and texture. 
 
Performance of Fuzzy Classification 

Using elevation, slope, and apparent soil EC data, a fuzzy k-means clustering 
algorithm resulted in the delineation of 5 zones throughout the pasture (Fig. 4). 
This clustering agreed well with landscape position. Zone 1 included bottomland 
and backslope characteristics; Zone 2 was primarily a sideslope; Zone 3 was 
primarily bottomland; Zone 4 combined all three landscape positions, but with

 

Fig. 4. Fuzzy clustering results for the 
initial sampling scheme (n = 116). 

 

 

Fig. 5. Sampling points for multistage 
sampling scheme (n = 30). 

 

 

Fig. 6. Sampling points for multistage 
sampling scheme (n = 15). 
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more gently rolling sideslopes compared to Zone 2; Zone 5 was a region 
consisting primarily of summit land but with some sideslope area. Cluster 
membership was spatially discrete with only a few points that were nonadjacent 
to other members of their zone. Zone 5 included points on both the west and 
east ends of the pasture, but this separation in zone membership was likely due 
to the repeating landscape pattern in the field. Zone 5 revealed a repeated 
summit from the repeating summit, sideslope, toeslope, and backslope pattern 
in the field. Table 1 quantitatively describes each of the five strata. It is worth 
noting that the five zones are not of equal size. The fuzzy clustering algorithm 
reiteratively classified each of the 116 points until each point in a zone was more 
similar to the cluster centroid than to any other cluster. Therefore, a relatively 
small amount of variability in soil measurements was expected within each zone. 
Zone 3 was primarily a bottomland area and it exhibited the most variability in 
soil P, pH, organic matter, moisture, and EC. Zone 5 showed the most variability 
in soil K.  
 
Table 1. Mean and standard deviation (SD) for chemical and physical soil 
attributes shown for each zone. 

* ppm is parts per million, OM is organic matter, mS/m is milliSiemens per meter.
 

With the five strata delineated, an analysis of variance using SAS (SAS 
Institute, Cary, NC) was performed to determine if the strata were indeed 
different based upon the measured soil variables. If the zones were significantly 
different from one another based on the soil parameters, then they would be 
considered acceptable sampling zones. Results from the ANOVAs for soil P, K, 
pH, OM, and gravimetric moisture are shown in Table 2 based on the entire data 
set (n = 116). The results indicated that the effect of zone on all the soil 
parameters was significant. Thus, the resultant zones from the fuzzy clustering 
algorithm appear to have delineated significantly different zones based on the 
five soil attributes.  
 
Table 2. One-way ANOVA results for five zones. 

df = degrees of freedom, MS = Mean Square, F = F ratio 
* Significant at the 0.001 probability level. 
 
 

 

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

n = 21 n = 20 n = 15 n = 37 n = 23

Mean SD Mean SD Mean SD Mean SD Mean SD

Elevation 
(feet)

979.7 3.3 981.0 3.3 974.4 0.7 989.8 1.6 989.2 3.3

Slope 
(degrees)

5.5 1.0 7.6 0.8 4.0 1.0 5.9 0.7 3.6 0.7

P-Bray 
(ppm)*

12.6 7.3 12.9 3.3 21.9 12.0 13.4 4.4 15.8 5.6

K-NH4AcO 

(ppm)
111.4 30.3 153.1 30.6 100.8 34.7 193.9 49.1 192.3 64.8

pH (1:1 
soil/water)

6.4 0.3 5.8 0.1 6.7 0.4 5.7 0.1 5.8 0.1

OM (%) 2.4 1.0 2.1 0.6 3.1 1.2 2.0 0.5 2.0 0.5

Moisture 
(%)

27.6 1.7 27.1 0.8 31.1 4.6 27.2 0.9 26.7 0.8

Soil EC 
(mS/m)

52.1 1.8 42.1 1.9 47.6 3.5 42.1 2.0 40.7 1.6

Source df P-Bray K-NH4AcO pH OM Moisture

MS F* MS F* MS F* MS F* MS F*

Zone 4 254.34 6.00 42406.78 20.27 3.92 70.17 4.01 7.38 52.22 14.31

Error 111 42.36 -- 2091.75 -- 0.06 -- 0.54 -- 3.65 --
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Performance of Multistage Sampling Scheme 

Fuzzy k-means classification techniques can result in a reduction in sampling 
intensity because homogeneous areas are not oversampled (13). The new 
stratified sampling scheme derived using a fuzzy k-means algorithm decreased 
the number of sampling points by 74% (116 to 30) and 87% (116 to 15), 
respectively. A reduction in the number of sampling points while maintaining 
accuracy of field characterization was the goal of this sampling scheme. One 
method for determining whether this goal was met is to compare the variance of 
the estimated population total to that of a random sample of the same size (15). 
When comparing the n = 30 stratified sampling scheme with that of a random 
sample of 30 points, a general trend of increased variances for the random 
sample was observed for four of the five soil variables (Table 3). Potassium was 
the single exception for the n = 30 sampling scheme. This difference in variances 
was not significant (P = 0.20), however, and it may be attributed to an 
inherently high variability (56 to 369 ppm) in soil K for this pasture. The same 
general trend of increasing variances with random samples was also evident in 
the n = 15 sampling scheme. The single exception was soil P, and again, this 
difference occurred with a relatively variable soil property, and it was not 
significant (P = 0.20). Although few of the stratified-random comparisons were 
significantly different from one another (P = 0.20), the difference in population 
variances may transfer to a measurable difference in actual field 
characterization. This effect was not examined. However, reducing the 
estimation of the population variance improves the precision associated with the 
sample values.  
 
Table 3. Comparison of estimated population variances between the stratified 
(strat.) and random (rand.) sampling schemes at two sampling densities (n = 30 
and n = 15). 

 
It is worthwhile to note that the stratified sampling scheme significantly 

reduced population variance the most for soil pH in both the n = 30 and n = 15 
sampling schemes (P = 0.10) (Table 3). It is hypothesized that this is because pH 
is the soil variable most closely correlated with the three noninvasively 
measured soil parameters used for fuzzy classification. Consequently, as would 
be expected, stratification worked best for soil variables most closely related to 
the variable(s) used for fuzzy classification. 

Validation of the two new sampling schemes was conducted by interpolating 
the data from the new sampling schemes to estimate unsampled points in the 
pasture. Data were interpolated by kriging (3). The predictions resulting from 
kriging were compared to the actual values at unsampled points known from the 
original (n = 116) sampling scheme (Fig. 3). Similar to most soil sampling 
situations, we assumed that we did not know the semivariogram model for the 
soil variables measured. Therefore, when attempting to find the best 
semivariogram model, the model with the lowest root mean square error 
(RMSE) of prediction for cross-validation of the sampled points was chosen (17). 
The RMSE was a measure reporting the precision of prediction. It should be as 
small as possible for unbiased and precise predictions (17). For cross-validation, 
each sampling point from a sampling scheme was removed in turn and kriging 
was used to predict its value based on the remaining points. The ArcGIS 
extension Geostatistical Analyst was used for these procedures (ESRI, Redlands, 
CA).  
 

 

Estimated population total variances

n = 30 n = 15

strat. rand.
F 

ratio P > F strat. rand.
F 

ratio P > F

Phosphorus 8803 11554 1.31 0.232 18244 16518 0.91 0.571

Potassium 909319 870687 0.96 0.544 2459667 2667591 1.08 0.442

pH 14 54 3.86 <0.001 48 102 2.13 0.077

OM 99 144 1.45 0.157 250 267 1.07 0.449

Moisture 1586 2460 1.55 0.118 924 1071 1.16 0.389
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The 86 and 101 points not included in the n = 30 and n = 15 sampling 
schemes, respectively, were used as validation sets. These large validation sets 
were compared with the predicted soil values from kriging (Table 4). A 
comparison of predicted versus actual values for the soil parameters described 
how well the kriged results from each sampling scheme estimated unsampled 
points. Soil pH at unsampled points was predicted the best out of the five soil 
variables (Table 4). This result could again be attributed to the fact that pH is a 
soil variable most closely correlated with the three noninvasively measured soil 
parameters used for fuzzy classification. The results of soil pH indicated that the 
higher sampling density resulted in a nearly twofold decrease in prediction 
error, and it also improved the r2 value (Table 4). The increase in prediction 
error associated with the decrease in sampling intensity may or may not be of 
consequence depending on the cost-to-benefit ratio of additional sampling. In 
the case of soil pH, the additional cost and effort required to sample the 15 
additional points would have to be weighed against the potential benefits from 
more precise application of lime.  
 
Table 4. Validation set root mean square errors (RMSE) 
of soil data prediction for kriging the n = 30 and n = 15 
sampling schemes. Coefficient of determination (r2) 
between predicted and actual values for validation set. 

* ppm is parts per million, OM is organic matter. 
 

The results of soil phosphorus and moisture were similar to soil pH (Table 
4). There was an increase in prediction error for the unsampled points when 
fewer samples were measured, and the coefficient of determination was 
significantly smaller for the lower density sampling scheme. Soil moisture 
exhibited an especially poor r2 value for the n = 15 sampling scheme. Several 
hypotheses may account for this result. First, this result may be due to the fact 
that soil moisture gradients did not correlate well with the zones produced by 
fuzzy classification of the three noninvasively measured soil parameters. Second, 
the selection of points within each zone may not have been ideal for accurate 
detection of pasture variability in moisture. Third, the reliability of the 
experimental semivariogram is affected by the size of the sample and the 
configuration of the sample (19). With only 15 sampling points and an irregular 
sampling pattern, the resultant experimental semivariogram may not have 
provided an accurate model of soil variability. In fact, Webster and Oliver (19) 
state that experimental variograms based on fewer than 50 data often have little 
or no evident structure. However, as the size of the sample is increased, the 
structure of the variogram becomes clearer (19). In the field, however, the size of 
the sample is often determined by the availability of resources such as time, 
labor, and money. 

Soil potassium and organic matter displayed different results than pH, 
phosphorus, and moisture. With both potassium and organic matter, the RMSE 
of prediction decreased when fewer points were sampled (Table 4). However, 
this decrease in RMSE was not substantial. The r2 value for potassium decreased 
when fewer points were sampled (similar to pH, phosphorus and moisture). The 
r2 value for organic matter actually increased for the n = 15 sampling scheme. 
This aberrant outcome was likely a rare result.  
 
 

 

n = 30 n = 15

RMSE 
(unit) r 2 RMSE

(unit) r 2

P-Bray, ppm* 4.903 0.549 6.884 0.265

K-NH4AcO, ppm 45.70  0.518 44.160 0.458

pH, 1:1 
soil/water

0.169 0.858 0.306 0.555

OM, % 0.762 0.187 0.733 0.250

Moisture, % 1.611 0.501 2.414 0.044
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Conclusions 
Soil EC can be used to detect soil variability in pastures. Using EMI 

techniques, such data collection is rapid, easy, and noninvasive. When soil EC 
data was coupled with georeferenced topographic information such as elevation 
and slope, a large database was available to describe field variability. This large 
database was incorporated with fuzzy clustering as a way to delineate 
homogeneous sampling zones in the pasture. Thus, the zones provided an 
effective starting point for soil sampling. As a final stage in the multistage 
sampling scheme, ranked set sampling insured an unbiased selection of points 
(10) while maintaining within cluster variability.  

The study suggests that soil variables most closely related to those used for 
clustering are predicted with the least error at unsampled points. Soil pH was 
most highly correlated with soil EC, and the prediction accuracy of pH at 
unsampled points was highest (Table 4). In general, there was a loss in 
prediction accuracy resulting from a decrease in sampling intensity. However, 
this loss in predictive accuracy may not have economic or management 
consequence to the producer. 

Stratification was useful in dividing a heterogeneous population such as a 
pasture into relatively homogeneous subpopulations, or sampling zones. 
Because the pasture of study included five topographically distinct landscape 
positions often inherent to pastures larger in scale, the sampling method 
explored in this study may be applicable to larger pastures. By stratification of 
this pasture using the fuzzy k-means clustering algorithm, a more directed 
approach to soil sampling was taken. A more optimal sampling scheme covers 
the same area with fewer sampling points, less time, and less labor while using 
rapid, noninvasive, geospatial tools. Knowing about field variation without an 
invasive and time-consuming survey may save labor and can direct efforts for 
sampling. 
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